تبلیغات
گروه ریاضیات دانشگاه علوم پایه دامغان - ریاضیات
 
گروه ریاضیات دانشگاه علوم پایه دامغان
چهارشنبه 14 اسفند 1387 :: نویسنده : محمد رضا پلوان

ریاضیات


ریاضیات یا انگارش[۱] را بیش‌تر دانش بررسی کمیت‌‌ها و ساختار‌ها و فضا و دگرگونی (تغییر) تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم (دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است)...........


ریاضیات خود یکی از علوم ‌طبیعی به‌شمار نمی‌رود، ولی ساختارهای ویژه‌ای که ریاضیدانان می‌پژوهند بیشتر از دانشهای طبیعی به ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی، اقتصاد و پزشکی بسیار به ریاضیات تکیه دارد ولی گاه ریاضیدانان به دلایل صرفاً ریاضی (و نه کاربردی) به تعریف و بررسی برخی ساختارها می‌پردازند.



موضوع‌های اصلی ریاضیات

فهرستی الفبائی از عنوان‌های ریاضی موجود است. در زیر بعضی از اصلی‌ترین شاخه‌ها و موضوعات ریاضی به صورت دسته‌بندی شده ارائه شده است:

 کمیت

مجموعه، ‌رابطه، تابع، عمل، گروه، میدان، عدد، اعداد طبیعی، اعداد بداست حسابی، اعداد ریاضی اخ است صحیح، اعداد اول، اعداد مرکب، اعداد گویا، اعداد گنگ، اعداد حقیقی، ‌اعداد مختلط، اعداد جبری، عدد پی، عدد ای، چهارگان‌ها، هشت‌گان‌ها، شانزده‌گان‌ها، اعداد پی-ادیک، اعداد فوق پیچیده (Hypercomplex numbers)،اعداد فوق حقیقی (Hyperreal number)،اعداد فراواقعی (Surreal numbers)، بینهایت، اعداد ترتیبی، اعداد اصلی، ثابت‌های ریاضی، پایه

 ساختار


جبر مجرد نظریه اعداد نظریه گروه‌ها
توپولوژی نظریه مدول‌ها نظریه ترتیب

جبر مجرد، نظریه اعداد، هندسه جبری، نظریه گروه‌ها، مونوئیدها، آنالیز ریاضی، آنالیز تابعی، توپولوژی، جبر خطی، نظریه گراف، جبر عمومی، نظریه مدول‌ها، نظریه ترتیب، نظریه مزور

 فضا

توپولوژی هندسه مثلثات هندسه دیفرانسیل هندسه برخال‌ها

توپولوژی، هندسه، مثلثات، هندسه جبری، هندسه دیفرانسیل، توپولوژی دیفرانسیل، توپولوژی جبری، جبر خطی، هندسه برخال‌ها، متری

 تغییر

36 \div 9 = 4 \int 1_S\,d\mu=\mu(S)
حساب حسابان حساب برداری آنالیز ریاضی
\frac{d^2}{dx^2} y = \frac{d}{dx} y + c
معادلات دیفرانسیل سیستم‌های دینامیکی نظریه آشوب

حساب، حسابان، حساب برداری،‌ آنالیز ریاضی، معادلات دیفرانسیل، سیستم‌های دینامیکی، نظریه آشوب، فهرست تابع‌ها

پایه‌ها و روش‌های ریاضیات

فلسفه ریاضیات، شهودگرایی، ساخت‌گرائی، مبانی ریاضیات، نظریه مجموعه‌ها، منطق نمادی، نظریه مدل، نظریه رسته‌ها، منطق ریاضی، ریاضیات معکوس، جدول نمادهای ریاضی

 ریاضیات گسسته

[1,2,3][1,3,2]
[2,1,3][2,3,1]
[3,1,2][3,2,1]
ترکیبیات نظریه شهودی مجموعه‌ها نظریه رایانش رمزنگاری نظریه گراف

ترکیبیات، نظریه شهودی مجموعه‌ها، نظریه رایانش، رمزنگاری، نظریه گراف

 ریاضیات کاربردی

فیزیک ریاضی، مکانیک، مکانیک سیالات، آنالیز عددی، بهینه‌سازی، احتمالات، آمار، اقتصاد ریاضی، ریاضیات مالی، نظریه بازی‌ها، ریاضیات زیستی، رمزنگاری، نظریه اطلاعات

 جستارهای وابسته

 آموزش ریاضی

قضیه‌ها و حدس‌های مشهور


 تاریخچه و جهان ریاضیات

 ابزارهای ریاضی

کهن
نوین

مسابقات بین المللی ریاضی

گفتاورد (نقل قول)

برتراند راسل زمانیکه درباره روش بُنداشتی (اصل موضوعی) سخن میگفت که در آن برخی ویژگی‌های یک ساختار (که چیزی از آن نمی‌دانیم) فرض می‌شود و پیامدهای این فرض از راه منطق نتیجه‌گیری می‌شود گفت:

   
ریاضیات
ریاضیات را می‌توان رشته‌ای تعریف کرد که در آن نه معلوم است از چه سخن می‌گوییم و نه می‌دانیم آنچه‌که می‌گوییم صحت دارد.
   
ریاضیات

برتراند راسل


   
ریاضیات
ما در ریاضیات مطالب را نمی‌فهمیم، بلکه تنها به آنها عادت می‌کنیم.
   
ریاضیات

جان فون نویمن


ریاضیات نباید با اینها اشتباه شود

  پیوند به بیرون


 منابع

  • دائره المعارف ریاضیات دانشگاهی تالیف غلامرضا صفاکیش همدانی، نشر ریاضی، ۱۳۸۱، تهران.
  • ریاضیات مهندسی نوشته حسین سرمدی، نشر سنجش، ۱۳۸۶، تهران.






نوع مطلب : ریاضیات، 
برچسب ها :
لینک های مرتبط :
چهارشنبه 14 اسفند 1387 03:19 ب.ظ
ali bod mer30
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر


آمار وبلاگ
  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :